
International Journal of Scientific & Engineering Research, Volume 1, Issue 2, November-2010 1
ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

FPGA-Based Design of Controller for Sound
Fetching from Codec Using Altera DE2 Board

A.R.M. Khan, A.P.Thakare, S.M.Gulhane

ABSTRACT— The trend in hardware design is towards implementing a complete system, intended for various applications, on a single chip. In
order to implement the any speech application in Altera DE2 board a controller is designed to control the CODEC and acquire the digital data
from it. This paper presents an experimental design and implementation of the controller using the specification given by the Philips for I2C
protocol & DSP mode of operation of CODEC on cyclone-II EP2C35F72C6 FPGA in Altera DE2 board . A controller was designed using VHDL
language, which performs the two operations: I2C protocol operation to drive the Wolfson Codec WM8731, sound fetching from Wolfson Codec
WM8731 to FPGA in DSP mode. Altera Quartus II 9.0 sp2 web Edition is used for the synthesis of the VHDL logic on FPGA and ModelSim-
Altera 6.5b (Quartus II 9.1) Starter Edition is used for the simulation of VHDL logic. Three modules have been created in the design: the I2C bus
controller, virtual sound fetcher, and the clock module. The FPGA communicates with the Wolfson via the I2C (Inter-Integrated Circuit) protocol
using two pins: 'SDIN' (the data line), and 'SCLK' (the bus clock). I2C bus controller modifies internal settings of Codec, de-mute the microphone
input, boost the microphone volume, and change the default sound path (so that the microphone is given priority over other inputs). After the
codec digitalizes the input it put the digital data on digital audio interface, to fetch the data on DACDAT of codec form digital audio interface DSP
mode of operation of codec is used in the design. DACDAT is the formatted digital audio data stream with left and right channels multiplexed
together. DACLRC (alignment clock) and BCLK (synchronization clock) is used to fetch the data on DACDAT this data can be use for any sound
application. Clock module is design to generate different clock requirement for the controller.

Keywords— I2C bus controller, Quartus II, ModelSim, Codec, Virtual Sound fetcher.

—————————— ——————————

I. INTRODUCTION

FPGA becomes one of the most successful of today’s
technologies for developing the systems which require a
real time operation. The term field Programmable
highlights the customizing of the IC by the user, rather than
by the foundry manufacturing the FPGA. Several
researchers discussed the design of hardware systems.
Numbers of these works were specialized in designing the
controllers for different application, and were aim to get
better control responses, FPGA are two dimensional arrays
of logic blocks and flip-flops with an electrically
programmable interconnection between logic blocks. The
interconnections consist of electrically programmable
switches which is why FPGA differs from Custom ICs, as
Custom IC is programmed using integrated circuit
fabrication technology to form metal interconnections
between logic blocks. In an FPGA logic blocks are
implemented using multiple level low fan in gates, which
gives it a more compact design compared to an
implementation with two-level AND-OR logic. FPGA
provides its user a way to configure and these
specifications. Altera DE2 board become one of the most
widely development FPGA board which is used to
development of FPGA design and implementations, the
board offers a rich set of features that make it suitable for
use in a laboratory environment for university and college
courses, for a variety of design projects, as well as for the
development of sophisticated digital systems. Software

provided with the DE2 board features the Quartus® II Web
Edition CAD system, and the Nios® II Embedded
Processor. Also included are several aids to help students
and professionals experiment with features of the board,
such as tutorials and example applications. Traditionally,
manufacturers of educational FPGA boards have provided
a variety of hardware features and software CAD tools
needed to implement designs on these boards, but very
little material has been offered that could be used directly
for teaching purposes. Altera's DE2 board is a significant
departure from this trend.

II. DE2 DEVELOPMENT BOARD

Altera DE2 board become one of the most widely
development FPGA board which is used to development of
FPGA design and implementations [5]. The purpose of the
Altera DE2 Development and Education board is to
provide the ideal vehicle for learning about digital logic,
computer organization, and FPGAs. It uses the state-of the-
art technology in both hardware and CAD tools to expose
students and professionals to a wide range of topics. The
board offers a rich set of features that make it suitable for
use in a laboratory environment for university and college
courses, for a variety of design projects, as well as for the
development of sophisticated digital systems. Altera
provides a suite of supporting materials for the DE2 board;
including tutorials, “ready-to-teach” laboratory exercises,
and illustrative demonstrations [6] Fig. 1 gives the block
diagram of the DE2 board. To provide maximum flexibility

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 1, Issue 2, November-2010 2
ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

for the user, all connections are made through the Cyclone
II FPGA device. Thus, the user can configure the FPGA to
implement any system design.

Fig. 1: Block Diagram of DE2 Board [6]

III. STRUCTURE OF CONTROLLER

In order to implement the any speech application
controller is design in the Altera DE2 board shown in the
Fig. 2 the design is broken down into modules. These are
then mapped to combinational logic and finite-state
machines (FSM); using the Quartus II software
package .Three modules have been created: I2C bus
controller, Virtual sound fetcher, Clock module.

Fig. 2: Block Diagram of controller

A. I2C bus controller
The FPGA communicates with the Wolfson via the I2C

(Inter-Integrated Circuit) protocol using two pins: 'SDIN'
(the data line), and 'SCLK' (the bus clock) Fig. 3 shows the
complete requirement of data transmission through
I2C .Within the procedure of the I2C bus, unique situations
arise which are defined as START (S) and STOP (P)
conditions. START means a HIGH to LOW transition on
the SDIN line while SCLK is HIGH & STOP means a LOW
to HIGH transition on the SDIN line while SCLK is
HIGH .The master always generates START and STOP
conditions. The bus is considered to be busy after the
START condition. The bus is considered to be free again a
certain time after the STOP condition. The bus stays busy if
a repeated START (Sr) is generated instead of a STOP
condition. In this respect, the START (S) and repeated
START (Sr) conditions are functionally identical. The S
symbol will be used as a generic term to represent both the
START and repeated START conditions, unless Sr is
particularly relevant. Detection of START and STOP
conditions by devices connected to the bus is easy if they
incorporate the necessary interfacing hardware. The
content s of the data line are sent in the same order as seen
in Fig. 3 (after a start condition): 'RADDR', 'R/W',
'ACK','DATAB[15-9]', and 'DATAB[8-0]', which stand
respectively for “base address”, “Read/Write”,
“acknowledge”, “control address”, and “control data”. The
clock for the control serial data input is SCLK. The
maximum frequency for this signal is 400 kHz, the
frequency used in this paper is f=50 MHz/128 = 390.625 kHz.

The data input signal is SDIN, it contains the
information for the control interface [9]. The controller was
reprogrammed using the 2-wire interface with the
EP2C35F672C6 FPGA in Cyclone II board. After the start
condition that is a falling edge on SDIN while SCLK is high.
The following seven bits determines which device receives
the data, the address depends on the CBS state (set to
ground in this codec) so it is “0011010”. After this address,
the bit R/W determines the direction of data transfer, in this
case a ‘0’indicates ‘write’. The device recognizes the
address and R/W by pulling SDIN low during the ninth
clock cycle, acknowledging the data transfer. The control
follows with two bit blocks (separated with another

Altera DE2 board

DE2 Board

Cyclone-II EP2C35F72C6 FPGA

I2C bus controller

Virtual sound fetcher

Clock module

 I2C bus

Wolfson Codec
WM8731

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 1, Issue 2, November-2010 3
ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

acknowledge) the first block B [15:9] contains the control
address bits, and the second block B [8-0] contains the
control data bits. The stop condition after the data transfer
is a rising edge on SDIN when SCLK is high. If a start
condition is detected out of the sequence at any point in the
data transfer then the device will jump to the idle condition.
After a complete control operation, the audio codec returns
to the idle state and waits for another start condition.[9],[10]

Fig. 3: Requirement of data transmission through I2C

B. Virtual Sound fetcher
The WM8731 or WM8731L (WM8731/L) are low power

stereo CODECs with an integrated headphone driver. The
WM8731/L is designed specifically for portable MP3 audio
and speech players and recorders. The WM8731 is also
ideal for MD, CD-RW machines and DAT recorders. The
on-board digital to analogue converter (DAC) accepts
digital audio from the digital audio interface. Digital filter
de-emphasis at 32 kHz, 44.1 kHz and 48 kHz can be
applied to the digital data under software control. The
DAC employs a high quality multi-bit high-order
oversampling architecture to again deliver optimum
performance with low power consumption. The DE2 board
provides high-quality 24-bit audio via the Wolfson
WM8731 audio CODEC (enCOder/DECoder). This chip
supports microphone-in, line-in, and line-out ports, with a
sample rate adjustable from 8 kHz to 96 kHz. The WM8731
is controlled by a serial I2C bus interface, this is connected
to pins on the Cyclone II FPGA. A schematic diagram of the
audio circuitry is shown in Fig. 4, and the FPGA pin
assignments are listed in Table 1.[6],[7]

Fig. 4 Audio CODEC Schematic

TABLE.1
FPGA PIN ASSIGNMENTS

1) Slave Mode of Operation: As a slave device the
WM8731/L sequences the data transfer (ADCDAT,
DACDAT) over the digital audio interface in response to
the external applied clocks (BCLK, ADCLRC, DACLRC).
Note that the WM8731/L relies on controlled phase
relationships between audio interface BCLK, DACLRC and
the master MCLK.[8]

2) Digital Audio Interfaces: WM8731/L may be operated in
either one of the 4 offered audio interface modes. All four
of these modes are MSB first and operate with data 16 to 32
bits. These are:

Right justified
Left justified

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 1, Issue 2, November-2010 4
ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

I2S
DSP mode

3) Digital Audio Interface Formats in DSP Mode: There are
four digital audio interface formats accommodated by the
WM8731/L. DSP Mode format is shown in the Fig. 5 below.
DSP mode is where the left channel MSB is available on
either the 1st or 2nd rising edge of BCLK (selectable by LRP)
following a LRC transition high. Right channel data
immediately follows left channel data. To accommodate
system timing requirements the interpretation of BCLK
maybe inverted, this is controlled vias the software. This is
especially appropriate for DSP mode.[8]

 Fig. 5 DSP Mode format of CODEC

IV. DESIGNING OF CONTROLLER

A. I2C bus controller
For implementing the controller, finite-state machine

(FSM) is used. However, even without any knowledge in
digital logic design, you can still very easily implement a
FSM by writing VHDL code. VHDL is popular hardware
description languages (HDL) for designing digital circuits.
A finite-state machine is a sequential circuit that uses a
finite number of states to keep track of its history of
operations, and based on this history and its current inputs,
determine what to do next. The state variable declared
using the SIGNAL keyword is the state memory. It is of
type STD_LOGIC_VECTOR, which is an 8-bit bit string.
The PROCESS block specifies that whenever there is a
change in either of the two signals, clk and rst, the
statements inside the block will be executed in sequential
order starting with the first line. We have an active high
reset signal as specified in the IF statement that tests for the

signal being a 1. When rst is deasserted, i.e., when rst is
equal to 1, the module goes into the reset mode and
outputs logic 1 value for both the SDIN and SCLK output
signals. Furthermore, it assigns state x"00" as the initial
state for when the FSM starts. x"00" is the syntax for the
two hexadecimal digits 00. When rst is asserted, the ELSIF
statement is executed.

The condition, Clock’ EVENT AND Clock = '1', specified
inside the ELSIF statement checks for a rising clock edge.
So at every rising clock edge, the FSM will go to a new state
and a new set of output signals will be generated [4] , To
get 400kHz for I2C standard; every 2 cycles of 800kHz = 1
I2C cycle by using crystal frequency 50MHz/64 = 781kHz .

The clock for the control serial data input is SCLK
maximum frequency for this signal is 400KHz that we are
generating from 800KHz clock. The implementation of
SDIN signal requires some special attention as it is
bidirectional and open drain so to output the logic 1 on
this line ,we need to set this to high impedance, to get high
impedance we need to use tri-state output and assign to it
a ’Z’ value. The condition signal assignment statement use
in VHDL program is [1],[4]

SDIN <= ‘Z’ WHEN SDIN01 =’1’ ELSE ‘0’

B. Virtual Sound fetcher
Operating the digital audio interface in DSP mode

allows ease of use for supporting the various sample rates
and word lengths. The only requirement is that all data is
transferred within the correct number of BCLK cycles to
suit the chosen word length. In Slave mode, DACLRC and
ADCLRC inputs are not required to have a 50:50 mark-
space ratio. BCLK input need not be continuous.[8]

It is however required that there are sufficient BCLK
cycles for each DACLRC/ADCLRC transition to clock the
chosen data word length. The non-50:50 requirements on
the LRCs is of use in some situations such as with a USB
12MHZ clock. Here simply dividing down a 12MHz clock
within the DSP to generate LRCs and BCLK will not
generate the appropriate DACLRC or ADCLRC since they
will no longer change on the falling edge of BCLK.[8]

For example, with 12MHz/32kfs mode there are 375
MCLK per LRC. In these situations DACLRC/ADCLRC can
be made non 50:50. The 12MHz Clock is generated using
50MHz crystal oscillator available in DE2 board.

V. EXPERIMENTAL RESULTS

A. ModelSim- Altera 6.5b (Quartus II 9.1) (Results)
This is a program to simulate VHDL code. The VHDL

files are complied, the input signals are forced to the

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 1, Issue 2, November-2010 5
ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

correspondent values and the evolution of the signals is
shown in waves and list. The simulation result of the I2C
Controller with start & stop condition is shown in Fig. 7
and simulation result of the complete operation virtual
sound fetcher is shown in Fig. 8

B. Quartus II (9.0)Sp2 Web Edition (Results) :

This is the main program and it is used to build the
projects. It has many tools to prepare VHDL or VERILOG
structures and download them to the board. The
assignment of the pins is done with the Quartus II
Assignment Editor, after this the VHDL files can be
compiled and downloaded to the board with the
Programmer tool.[2]

In this project, JTAG programming (Joint Test Action
Group) is used so the configuration bit stream is
downloaded directly into the FPGA that will retain the
configuration as long as the power is applied to the board.
Pin assignment used in the design is as shown
Table.1 .You can view the internal structure of the design
netlist technology map viewer. To view the post-fitting
view of the schematic, you must first perform a full
compilation, and then choose the, either after fitting or after
Analysis & Synthesis, with the technology map viewer
command.

To view the post-mapping view of the schematic, you
must first perform Analysis & Synthesis, and then choose
the technology map Viewer (Post-Mapping) command.

Synthesized design of the I2C Controller.(RTL view) is
as shown in Fig. 9 and synthesized design of virtual sound
fetcher is shown in Fig. 10 and Fig. 11 shows complete

Synthesized Design of virtual sound fetcher with I2C
specification (RTL view).

C. Pin Assignment of FPGA

 Quartus –II requires the pin assignment for the actual
implementation of the design on FPGA in cyclone –II 475
I/O pins are available out of which 11 pin are used for the
port mapping in the design. Cyclone –II classify the pins
into I/O bank and the assignment editor in Quartus –II
provide the I/O standard general function and special
function of the assign pin detail of Quartus-II window is as
shown in the Fig. 6 .[11]

Fig. 6 FPGA Pin Mapping for the Design in Quartus-II

Fig. 7 Simulation result of the I2C Controller

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 1, Issue 2, November-2010 6
ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

Fig. 8 Simulation result of the complete operation virtual sound fetcher

+
A[4..0]

B[4..0]

ADDER

+
A[6..0]

B[6..0]

ADDER

D Q
PRE

EN A
CLR

D

EN A

Q
PRE

CLR

D Q
PR E

ENA

C LR
BUF (DIREC T)

0

1

1

D

EN A

Q
PRE

C LR

0

11
0
1

D

EN A

Q
PRE

C LR

0

1

1

D

EN A

Q
PRE

C LR

<
CIN

A[4..0]

B[4..0]

LESS_THAN

1

<
A[6..0]

B[6..0]

LESS_THAN

<
A[6..0]

B[6..0]

LESS_THAN

SEL[2..0]

D ATA[7..0]
OUT

MUX

SEL[2..0]

D ATA[7..0]
OUT

MUX

SEL[2..0]
D ATA[7..0] OUT

MUX
SEL[7..0]

DATA[255..0]
OU T

MUX

SEL[7..0]

D ATA[255..0]
OUT

MUX

SEL[7..0]

DATA[255..0]
OUT

MU X

SEL[7..0]

DATA[255..0]
OUT

MU X

SEL[7..0]

DATA[255..0]
OUT

MU X

SEL[7..0]

DATA[255..0]
OUT

MU X

SEL[7..0]

DATA[255..0] OUT

MU X

SEL[7..0]

DATA[255..0]
OUT

MU X

SEL[7..0]

DATA[255..0] OUT

MU X

SEL[7..0]

DATA[255..0]
OUT

MU X

SEL[7..0]

DATA[255..0]
OU T

MUX

SEL[7..0]

DATA[255..0]
OU T

MUX

SEL[7..0]

DATA[255..0]
OU T

MUX

SEL[7..0]

DATA[255..0]
OU T

MUX

SEL[7..0]

DATA[255..0]
OU T

MUX

SEL[7..0]

DATA[255..0]
OU T

MUX

D

EN A

Q
PRE

C LR

D

ENA

Q
PR E

CLR IO_BU F (TRI)

0

D Q
PR E

ENA

CLR

SEL
DATAA
DATAB OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21

Add01' h0 --

1' h1 --

5' h0D --

Add1

7 ' h01 --

bcount[2 ..0]

CLK_800k _H z
cl k_c ount800k[6..0]

comb~0

LEDACK1~0

LEDACK1~reg0

LEDACK2~0
LEDACK2~1

LEDACK2~reg0

LEDACK3~0

LEDACK3~reg0

Less Than0

4' h0 --1 ' h0 --

Less Than1

7 ' h40 --

Less Than2

7' h20 --

Mux1

8 ' h08 --

Mux2

8' h0D --
Mux3

256' hFF556B --

Mux5

1' h1 --

1 ' h0 --

1 ' h0 --

1 ' h0 --

3 ' h0 --

3 ' h0 --

5' h00 --

Mux6

1' h1 --

1 ' h0 --

1 ' h0 --

1 ' h0 --

3 ' h0 --

3 ' h0 --

5' h00 --

Mux7

1' h1 --

1 ' h1 --

1 ' h1 --

1 ' h0 --

3 ' h0 --

3 ' h0 --

5' h00 --

Mux8

1' h0 --

1 ' h0 --

1 ' h0 --

5' h10 --

3 ' h0 --

6' h00 --

Mux9

1' h1 --

1 ' h1 --

1 ' h1 --

5 ' h1F --

1 ' h1 --

1 ' h1 --

5' h00 --

Mux10

1' h1 --

1 ' h1 --

1 ' h1 --

3 ' h7 --

1 ' h1 --

1 ' h0 --

1 ' h0 --

2 ' h3 --

3 ' h0 --

Mux11

1' h1 --

1 ' h1 --

1 ' h1 --

3 ' h7 --

1 ' h0 --

1 ' h1 --

1 ' h0 --

2 ' h2 --

3 ' h6 --

Mux12

1' h0 --

1 ' h1 --

1 ' h1 --

1 ' h1 --

3 ' h2 --

3 ' h2 --

5' h15 --

Mux13

1 ' h1 --

Mux14

1 ' h1 --

Mux16

Mux17

Mux18

SCLK~reg0
SDIN 01

SDI N~0

s tat e[7 ..0]

bcount~[2 ..0]

3' h7 --

c lk_count800k~[6. .0]

7' h00 --

s tate~[7..0]

8 ' h0B --

s tate~[15. .8]

8' hEE --

C lk

Rs t

LEDACK1

LEDACK2

LEDACK3

SC LK

SD IN

W_En

Mux15

1 ' h1 --

Mux0

8 ' h34 --

Mux4

241' h1FFFEFFFE --

1' h1 - -

1' h1 - -

1' h1 - -

1' h1 - -

2' h1 - -

Fig. 9 Synthesized Design of the I2C Controller.(RTL view)

+
A[3..0]

B[3..0]

AD DER

+
A[7 ..0]

B[7 ..0]

AD DER

0

11
0

10
D

ENA

Q
PR E

CLR

0

1
D

EN A

Q
PR E

C LR

0

1
D

EN A

Q
PRE

CLR

D

EN A

Q
PR E

C LR

D Q
PRE

ENA

C LR

D Q
PRE

EN A

CLR

D

ENA

Q
PRE

CLR

=
A[2 ..0]

B[2 ..0]

EQU AL

=
A[2 ..0]

B[2 ..0]

EQU AL

=
A[6 ..0]

B[6 ..0]

EQUAL

=
A[6 ..0]

B[6 ..0]

EQUAL

=
A[6 ..0]

B[6 ..0]

EQUAL

D Q
PRE

ENA

CLR

D

ENA

Q
PRE

CLR

SEL[5..0]

DATA[63..0]
OUT

MUX

0

1
D

EN A

Q
PRE

CLR

SEL
DATAA

DATAB
OUT0

MU X21

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OU T0

MUX21

SEL
D ATAA

D ATAB
OUT0

MUX21

SEL
DATAA

DATAB
OU T0

MUX21

SEL
DATAA

DATAB
OUT0

MU X21

Add0

1' h1 --

4' hD --

Add1

1' h1 --

8' hFD --

AUD_BCLK~0 AUD_BCLK~1

AUD_BCLK~reg0
AUD_DACDAT~0

AUD_DACDAT~reg0

AUD_DACLRCK~0

AUD_DACLRCK~reg0

AUD_MCLK~reg0BBcount[6..0]

Bc ount[1..0]

Bcount [2]

Equal 0

3' h3 --

Equal 1

3' h0 --

Equal2

7' h01 --

Equal4

7' h30 --

LRDATA[49..0]

Mux0

14' h0000 --

puls e_48KHz~0

puls e_48KHz~reg0BBcount~[6..0]

7' h30 --

BBcount ~[13..7]

Bc ount~[2..0]

3' h4 - -

LRDATA~[99.. 50]
LRDATA~[149. .100]

cl k

rs t

pul se_48KHz

AUD_MCLK

AUD_B CLK

AUD _D ACD AT

AUD _D ACLRC K
LDATA[23..0]
RDATA[23..0]

Equal3

7' h00 --

W_EN LRDATA~[49..0]

2' h0 --

Mcount

Fig. 10 Synthesized Design of virtual sound fetcher.(RTL
view)

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 1, Issue 2, November-2010 7
ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D Q
PRE

ENA

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D Q
PRE

ENA

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

D

ENA

Q
PRE

CLR

0

10

0

11

=
A[2..0]

B[2..0]

EQUAL

0

11

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21

0

1

BUF (DIRECT)

SEL[7..0]

DATA[255..0]
OUT

MUX

+
A[4..0]

B[4..0]

ADDER
<

CIN

A[4..0]

B [4..0]

LESS_THAN

1
SEL

DATAA

DATAB
OUT0

MUX21

SEL[7..0]

DATA[255..0]
OUT

MUX

SEL[7..0]

DATA[255..0]
OUT

MUX

SEL[7..0]

DATA[255..0]
OUT

MUX

SEL
DATAA

DATAB
OUT0

MUX21

SEL[7..0]

DATA[255..0]
OUT

MUX

SEL[7..0]

DATA[255..0]
OUT

MUX

SEL[7..0]

DATA[255..0]
OUT

MUX

+
A[6..0]

B[6..0]

ADDER

SEL
DATAA

DATAB
OUT0

MUX21

<
A[6..0]

B[6..0]

LESS_THAN

+
A[3..0]

B [3..0]

ADDER

SEL
DATAA

DATAB
OUT0

MUX21

=
A[2..0]

B [2..0]

EQUAL

+
A[7..0]

B[7..0]

ADDER

SEL
DATAA

DATAB
OUT0

MUX21

=
A[6..0]

B[6..0]

EQUAL

SEL
DATAA

DATAB
OUT0

MUX21

0

1

SEL[5..0]

DATA[63..0]
OUT

MUX

0

1=
A[6..0]

B[6..0]

EQUAL

Mux5_OUT

Mux6_OUT
Mux7_OUT
Mux8_OUT

Mux12_OUT

state_OUT0

bcount_OUT0

Mux4_OUT SDIN01_OUT0

LRDATA~_OUT0

LRDATA_OUT0

Mux16_OUT
LEDACK1~reg0_OUT0

Mux18_OUT
LEDACK3~reg0_OUT0

Mux3_OUT

BBcount_OUT0

clk_count800k_OUT0

LessThan2_OUT

LRDATA~_OUT0

SDIN~0_OUT0

comb~1_OUT0

state~_OUT0

Equal1_OUT

AUD_BCLK~reg0

Clk

Rst

AUD_BCLK

AUD_DACDAT~reg0

AUD_DACDAT

state[7..0]

bcount[2..0]

LEDACK2~reg0

LEDACK2

SDIN01

Bcount1[1..0]

AUD_DACLRCK~reg0

AUD_DACLRCK

Mcount

LRDATA[1..0]

Bcount1[2]

LEDACK1~reg0

LEDACK1

LEDACK3~reg0

LEDACK3

SCLK~reg0

SCLK

BBcount[6..0]clk_count800k[6..0]

CLK_800k_Hz

AUD_BCLK~1

AUD_BCLK~0

Equal0

3' h3 --

LEDACK2~0

W_En

LRDATA~[1..0]

2' h0 --

s tate~[7..0]

8' h0B --

LEDACK2~1

comb~1

Mux17

Add0
1' h0 --

1' h1 --

5' h0D --

LessThan0

4' h0 --1' h0 --

bcount~[2..0]

3' h7 --

Mux11

1' h1 --

1' h1 --

1' h1 --

3' h7 --

1' h0 --

1' h1 --

1' h0 --

2' h2 --

3' h6 --

Mux9

1' h1 --

1' h1 --

1' h1 --

5' h1F --

1' h1 --

1' h1 --

5' h00 --

Mux10

1' h1 --

1' h1 --

1' h1 --

3' h7 --

1' h1 --

1' h0 --

1' h0 --

2' h3 --

3' h0 --

state~[15..8]

8' hEE --

Mux14

1' h1 --

Mux15

1' h1 --

Mux13

1' h1 --

Add1

7' h01 --

clk_count800k~[6..0]

7' h00 --

LessThan1

7' h40 --

Add2

1' h1 --

4' hD --

Bcount1~[2..0]

3' h4 --

Equal1

3' h0 --

Add3

1' h1 --

8' hFD --

BBcount~[6..0]

7' h30 --

Equal3

7' h00 --

BBcount~[13..7]

AUD_DACDAT~0

Mux19

62' h0000000000000000 --

AUD_DACLRCK~0

Equal4

7' h30 --

Fig. 11 Complete Synthesized Design of virtual sound fetcher with I2C specification (RTL view)

VI. CONCLUSIONS

 The results of the simulations are shown in a paper, after
checking the functionality with ModelSim, VHDL files is
successfully synthesized in DE2 board with Quartus-II.
This paper demonstrates the controller’s operation by
having its communication with Wolfson codec connected
on the I2C bus as slave & fetching of the sound data that is
left and right channel data of CODEC on the ADCDAT
pin of the FPGA. Utilization of FSM reduces the
synthesized hardware. Designed controller is mapped to
FPGA of 90nm technology, out of 33,216 LEs, 76 logic
elements are used in the design & only 11 I/O pins are used
from 475 pins of FPGA. Hence this optimal design reduces
the connection pin count for communication between the
chips. The logic of the design is general enough so that
anyone can use another compiler or another FPGA by
changing hardware dependent pin mapping. You should
also be able to use another chip instead of WM7831 that is
used as the I2C slave. The designed controller also allows

you to set address and the data switches at the bottom of
the DE2 board to read and write from/to slave.

ACKNOWLEDGMENT

The authors would like to thank firstly, our GOD, and all
friends who gave us any help related to this work. Finally,
the most thank is to our families and to our country INDIA
which born us.

REFERENCES

[1] J Bhaskar, A VHDL Primer, Prentice Hall.
[2] Zeyad Assi Obaid, Nasri Sulaiman and M. N.

Hamidon “FPGA-based Implementation of Digital
Logic Design using Altera DE2 Board” IJCSNS
International Journal of Computer Science and Network
Security, VOL.9 No.8, July 2009

[3] Mohammed Y. Hassan and Waleed F. Sharif, " Design
of FPGA based PID-like Fuzzy Controller for
Industrial Applications", IAENG International Journal

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 1, Issue 2, November-2010 8
ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

of Computer Science, 34:2, IJCS_34_2_05, 17 November
2007.

[4] Enoch Hwang “Implementing an I2C Master Bus
Controller in a FPGA for Maxim DS3232”, April 2008.

[5] FPGA tutorial “Over view on FPGA”,
www.Tutorialreports.com,
http://www.tutorialreports.com/computerscience/fpg
a/overview.ph

[6] “DE2 Development and Education Board” Altera DE2
Package, or [available online at]
http://www.altera.com

[7] “DE2 Development and Education Board, user
manual” Altera Version 1.42,2006,
http://www.altera.com.

[8] “WM8731 Data sheet”. Wolfson Microelectronics.
2004. PDF Document.

[9] AN10216-01 I2C MANUAL, Philips Semiconductors
March 24, 2003

[10] Carlos Asmat , David López , Sanzo Kanwen “Speech
Recognition Using FPGA Technology “ June 18, 2007
, Design project laboratory, Department of Electrical
Computer and Software Engineering

[11] José Ignacio Mateos Albiach “Interfacing a processor
core in FPGA to an audio system” Master thesis
performed in Electronics Systems LiTH-ISY-EX--
06/3896--SE ,Linköping 2006

http://www.ijser.org/
http://www.Tutorialreports.com/
http://www.tutorialreports.com/computerscience/fpg
http://www.altera.com/
http://www.altera.com./

